Graskop Gorge Lift Structure

What is the purpose of the structure/ project?

To create an exciting and popular tourist stop over point on the Panorama Route at Graskop, Mpumalanga. The gorge has established itself as an adventure destination through the Big Swing, which is a well-known operation, so there had been some “human footprint” in the gorge for a while. The client wanted to expand on the adventure concept and added the lift and interactive walking trail in the rain forest below. The purpose of the structure is to accommodate the glass viewing panoramic lift taking visitors 51m down the face of the Graskop Gorge into the forest below, where wooden walkways and suspension bridges meander along a 600 metre trail through the indigenous forest with interactive exhibits.

What was the brief to the architect?

To design a lift shaft structure to accommodate the panoramic glass viewing lift for the Graskop Gorge Lift Company, as well as the buildings around the panoramic lift at the Graskop Gorge Adventure Centre. The site was chosen adjacent to a structure for informal curio traders and a protruding rock outcrop which had been a viewing point with a small pub. This was the ideal position for the lift shaft. The brief was to incorporate the traders into the adventure tourism complex and upgrade the existing structure. The centre should accommodate the ticketing office, shops of various sizes, a restaurant and general viewing areas for the public. Support services for the centre also had to be included. The servicing of the lift required easy access to the lift motor room. A viewing platform was subsequently added around the lift motor room as an extension to the public deck.

Was the project envisaged in steel from the start? If not – why was it built in steel in the end?

Yes. Structural Steel was the choice of material for the Lift Shaft Structure from the beginning. Reasons include compatibility with the lift installation, and the open truss-like nature of the shaft structure to simulate the waterfall on the opposite side of the gorge.

Give a brief description of the structural framing. What type of sections were used (e.g. hollow, cellular, I beams etc) and why?

The distance from the base to the top of the shaft is 60m, with the total vertical lift travel distance of 51m. The shaft structure was designed as a vertical structure with two top fixing points apart from the fixing at the concrete base. UC 305x305x97 H-profiles were used for the 6 main shaft columns, because adequate l/r ratios were required for 10m segment lengths. Each segment was fully braced using 63,5×3 and 88.9×2,5 Circular hollow sections cross bracing between 203x133x25 UB lateral stiffness beams. 305x165x46 UB profiles were used for the access platform beams at the top of the shaft with 80x80x6 Angles for bracing. UC 152x152x23 profiles were used as knee brace elements to support and fix the top viewing platform to the main shaft structure.

Give a brief description of the cladding process (complexity, difficulty, innovation etc)

Cladding formed a minimal part of the Shaft Structure itself, only the top machine room side walls and roof received IBR cladding after the access platform to the machine room was completed.

Were there any challenges in the fabrication of the project from the engineer’s design – if yes, please tell? Tell more about fabrication and erection process if it was complex, difficult, innovative etc.

A national shortage of 305x305x97 H profiles, required the design to be altered to use 254x254x73 in the top part of the shaft. For the erection of the shaft a 70 tonne crane was planned, but it would require the crane to be too close to the edge of the cliff, and the crane cables were too short to reach the 51m deep bottom.. Instead a 9 tonne Spierings Mobile Tower Crane had to be hired that could lift 2.5 t per lift at a 27m reach, with adequate cable length to reach down to the bottom.

What is special/ unusual/ innovative/ aesthetic about the steelwork/cladding in this project?

The exquisite setting of the lift shaft structure opposite the Panorama Waterfall forms a truly aesthetic pleasing view from a distance, with the natural waterfall at one side of the gorge and the grey coloured, open truss-like lift shaft structure simulating the waterfall on the opposite side of the gorge, forming a beautiful parallel with each other.

How did the project team work together (e.g contractor involved early, challenges/ ease of communication etc.)

Two weekly formal project meetings were conducted with a formal “Request for Information” procedure that were frequently communicated and updated per email between the various team members.

Tons of structural steel used 110 t
Structural profiles used Hot rolled H-profiles, hot rolled I-profiles, Angle profiles, circular hollow sections
Cladding profile/ type used IBR
Cladding area/ coverage and tonnage 1100m2    2.8 tons

Project Team

Project Team Role Company
Nominator Fourie Consulting Engineers
Client/ Developer

 

 

Graskop Gorge Lift Company

In partnership with the NEF

(National Empowerment Fund)

Architect Förtsch and Associates Architects
Structural Engineer LEW Consulting Engineers (Pty) Ltd
Engineer LEW Consulting Engineers (Pty) Ltd
Quantity Surveyor Siyakha Quantity Surveyors (Pty) Ltd
Project Manager Purlin Consulting
Main Contractor ENZA Construction (Pty) Ltd
Steelwork Contractor Quality Steel Construction (Pty) Ltd
Steel Erector Quality Steel Construction (Pty) Ltd
Cladding Manufacturer Safintra (part of the Safal Group)
Cladding Supplier Safintra Roofing Nelspruit (part of the Safal Group)
Cladding Contractor Roofing Solutions CC
Corrosion Protection
Galvanising
Babcock Nthuthuko Powerlines (Pty) Ltd
Photographer, Photo competition Förtsch  and Associates Architects
Photographer, Other submitted images Förtsch and Associates Architects

ENZA Construction (Pty) Ltd

If you were a part of this project, and your company details are incorrect or missing – please notify the SAISC so that the error can be corrected.

Go Durban Integrated Rapid Public Transport Network (IRPTN)(Bus Stations)

What is the purpose of the structure/ project?

Construction of Prototype bus station for as part of Integrated bus rapid transport system

What was the brief to the architect?

To design and create a visually pleasing structure with Universal access, be Energy efficient, be ahead of current times, and take Durban Integrated rapid transit into the future.

Give a brief description of the structural framing. What type of sections were used (e.g. hollow, cellular, I beams etc) and why?

Generally square hollow tubing was used on most structural members, due to its light weight and excellent structural strength properties. Custom made hollow tubes had to be manufacture for the front and exit canopy legs, for aesthetic requirements.

Give a brief description of the cladding process (complexity, difficulty, innovation etc)

The project does not consist of any radically new innovation, but rather a creative way of using some common construction materials to create a homogeneous and appealing structure, which involved the erection of a structurally stable steel frame, which was then covered with steel roof and clad with a glass façade.

Give a brief description of the Light Steel Frame Building element of the project. (Notable features/ achievements made possible by LSFB)

Internally the roof has been insulated and the profile of the structure followed with an aluminium ceiling. This ceiling houses the light fixtures, and other emergency services required for puplic buildings.

Were there any challenges in the fabrication of the project from the engineer’s design – if yes, please tell? Tell more about fabrication and erection process if it was complex, difficult, innovative etc. 

A detailed coating spec was required for long term protection of the structural elements, due to the proximity to the ocean and industrial fallout in the area. This required all structural steel member to be galvanised and coated with a duplex paint coating system. The initial project specification required frame member be continuously welded and no bolted joints allowed.  Due to the length (slenderness) and shape(U) of the portal frame members, and possible distortion of structural member during the galvanising process, full galvanising of the originally designed members proved to be impossible without possible areas of coating weakness due to site welding. It was recommended to the engineer that a bolted joint be placed in the structural elements, hidden from view, in the ceiling/roof area. Thus reducing the size of the elements and improving handling of the elements, the ability to fully apply the specified coating systems, this would all  could be achieved without disturbing the long slender appearance of the legs, that the architect required.

What is special/ unusual/ innovative/ aesthetic about the steelwork/cladding
in this project?

The construction of project specific box sections for the front and exit canopies, to achieve the correct angle and shape required. Using 3D software non-standard box section were created to support the front and exit canopies

How did the project team work together (e.g contractor involved early, challenges/ ease of communication etc.)

The project team had to work closely with the architect, numerous changes were made to the structure initially (front and exit canopy) due to the specific planes and angles required to match the anticipated glass façade structure. 3D software was used to create the structure and ensure that the finer details could be achieved.

Tons of structural steel used 25 TONS
Structural profiles used CFLC 125x50x2.5 ; CFLC 100X50X2.5 ; UB 203X133X25

SHS 200X200X4.5 ; SHS 150X150X4.5 ; SHS 60X60X4.5

RHS 200X100X6.0 ; RHS 160X80X5.0 ; PLATES – 20MM;

16MM; 8MM; 6MM; 3MM; ANGLE 150X150X10 ;

UNEQUAL ANGLE 150X75X10 ; ANGLE 70X70X6 ;

ANGLE 40X40X3 ; FLAT BAR – 25MM, 20MM, 12MM;

8MM, 6MM, 5MM ; ROUND BAR – 60 DIA.

Tons of LSF used 5.257 TONS
Span of trusses and Kg/m2 (if applicable) 200 Meters of Balustrading
Profiles used 75×3 CHS S/S ; 80x40x2.5 RHS ; 20 RB ; 50×3 CHS S/S ; 10 RB ; 60x60x4.5 SHS ; 100x50x4.5 RHS ; 60×10 FL BAR
Type of cladding Hunter Douglas – Ceilings and Louvers
Cladding profile/ type used Brownbuilt Klip-Lok 406 (roof)
Cladding area/ coverage and tonnage Area 466m2

Project Team

Project Team Role Company
Nominator Shesha Engineering
Client/ Developer eThekwini Municipality
Architect Iyer
Structural Engineer Linda Ness Associates
Engineer (Site) MCA
Quantity Surveyor LDM
Project Manager MCA
Main Contractor Phayindani J.V
Steelwork Contractor Shesha Engineering
Steel Erector Shesha Engineering
Cladding Manufacturer HB Interiors

MJ Cheater Roofing

AGS Glass fibre

Cladding Supplier Hunter Douglas

City glass

Global roofing

Cladding Contractor HB Interiors

MJ Cheater Roofing

AGS Glass fibre

Corrosion Protection
Galvanising
Pinetown Galvanising
Corrosion Protection
Paintwork Contractor
Scott Clean
Photographer, Photo competition Lisa Woest Photography
Photographer, Other submitted images Qanza construction

If you were a part of this project, and your company details are incorrect or missing – please notify the SAISC so that the error can be corrected.

New Facilities Centre for Durban Girls High School

PURPOSE OF THE STRUCTURE:

To house a large indoor, multi-function space as a major educational facility for a premier girls high school and to increase their hall accommodation from 400, built in 1938, to 1400.

BRIEF TO THE ARCHITECT:

To create an indoor space capable of housing:

  • The school assembly hall and exam
  • An indoor playing field to comply with Olympic specifications for indoor
  • Use for indoor basketball, volleyball, badminton and
  • Multifunction venue for dramas, dances, fashion shows and
  • Stepped viewing terraces to seat 250 persons. Form of Building:
  • Essentially an industrial “shed” with various beautiful “diamonds” on it, as per the Porte’ entrance, stonework, raw hardwood terraces, facebrick, frameless glazing panels and timber movable ventilation
  • Elements of “African” identity are introduced as per curved walls, raw circular stonework, with chevron truss lattices reflected in side cladding polycarbonate V shaped
  • Main entrance Porte’ celebrates the existing outdoor court, and acts as a visual focus and entry inducement into the main space using tubular “tree”
  • Curved facebrick walls guide the ingress into the “shed” under the curved Porte’
  • Off shutter concrete, coated steel, raw hardwood timber and facebrick finishes are juxtaposed in achieving a low maintenance and a “raw” material
  • Environmental conservation to achieve a “green” building was applied where possible. eg. Water harvesting, no mechanical ventilation and utilising roof light daylight

BRIEF DESCRIPTION OF THE STRUCTURAL FRAME:

  • An aesthetic decision was made to express the dynamics of a steel clear span structure, integrated with the translucent sheeting panels of the gable frames and south
  • The roof trusses feature tubular sections with profiled gussets framing into H section top
  • The purlins are standard cold rolled lipped channel
  • The terrace seating, stairs and handrails express

CHALLENGES IN THE FABRICATION OF THE PROJECT:

  • Approximately a third of the truss was erected as a temporary roof at first floor hall level during an earlier
  • To complete the Project the new roof was site connected to the existing structure and re- erected at the higher new roof
  • This required challenges in the site fabrication and restricted erection

INNOVATIVE AESTHETICS ABOUT THE STEELWORK AND CLADDING:

  • The Porte’ and main roof have intersecting curves on the main roof
  • Gable sheeting girts reflect truss V forms with silver heat polycarbonate sidelights which create a chevron lit graphic inside in the day, and externally at

THE PROJECT TEAM CHALLENGES:

  • Due to limited access to the site, being within a wooded suburban area adjacent to a swimming pool, the methodology of construction and erection required a team
  • The Main Contractor further shortened the steel construction critical path by 3 months, necessitating close co-ordination between Architect, Engineer and Steel

It is considered that the integrated aesthetic form of the tubular section roof structure, exemplifies the use of steel construction in public facility buildings, in an urban environment.

STRUCTURAL STEELWORK
Completion date of steelwork September 2017
Completion date of full project February 2018
Tons of structural steel used 46 tonnes
Structural profiles used Tubular, Hot and Cold Rolled
SA content – if this is an export project 100%
   
CLADDING
   
Cladding profile/ type used Colour Coated Saflok 700
Cladding area/ coverage and tonnage 2650sqmeters, 16 tonnes
   

Project Team

Project Team Role Company
Nominator Young and Satharia
Client/ Developer DBN Girls High School Governing Body
Architect Neil Hayes-Hill Architect
Quantity Surveyor Edgecomb & Hayes-Hill
Main Contractor Nichol Projects (Pty) Ltd
Steelwork Contractor Ogilvie Engineering (Pty) Ltd
Cladding Manufacturer SAFINTRA
Cladding Supplier SAFINTRA
Cladding Contractor Four Seasons Roofing (Pty) Ltd

If you were a part of this project, and your company details are incorrect or missing – please notify the SAISC so that the error can be corrected.

Club 2

The new Club 2 Building in Hazelwood, Pretoria, is set to become a landmark property in the city. The modern, industrial yet retro look and feel, combined with the striking curved roof, has made it a hotspot for local tenants.

In 2015, Atterbury Properties appointed Hofman Architects to design a space that would accommodate a gym as well as office spaces. Situated on the corner of Pinaster Avenue and 18th Street in Pretoria, Club 2 builds on the prestigious Club One office building that was designed and completed in 2011. The five office floors of Club One are leased to the University of South Africa, with popular retail areas such as Hogshead Craft Beer and Hudsons The Burger Joint occupying the ground floor section.

The brief from the client to the architect evolved over time.  Initially, the brief was to design a building for Planet Fitness on the intersection South of the precinct, with an office component to make up the bulk on the Northern end of the property.  When the design was presented, Atterbury was so impressed that they decided to move their head office to the new building. 

This decision changed the brief to the architect in a few ways. The office component had to mirror the design of the client’s offices and it had to move to the prominent South corner of the building. The gym, in turn, had to move to the Northern section of the property without it losing visibility and exposure from passers-by.

The ideal design for a gym of this magnitude is a “warehouse” type structure.  With this in mind, the design was always envisaged as a steel structure. The office component has a beautiful, industrial theme, which can easily be accommodated by steel structures.

The building is constructed of a curved portal frame structure with large I-beam sections. 

The roof cladding that was specified for the project is KlipTite by Global Roofing Solutions. The cladding was cranked around the curves of the portal frames with custom made flashing detail to accommodate the curved roof.  The walls were constructed out of a combination of brickwork and the Imison lightweight wall system.

One challenge that the design team encountered was cladding the curved radius of the large section I-beams.  To overcome this challenge, these sections were manufactured and not rolled. Ensuring that the exact placing of these sections aligned with the columns on site was challenging, as were the flashings that were needed. The design team had a few flashing prototypes made and in the end a custom designed flashing had to be created to accommodate the curved roof.

The curved portals on the property are particularly unique, innovative and aesthetic. The portals step up and down over box gutters to let natural light into the interior spaces, and they step in and out over the façade to create deep overhangs to accommodate shaded public spaces over the entrances of the building.  This design element is what gives the building its unique appearance. 

When working on a steel structure, attention to detail is of paramount importance as any design flaws and errors can be quite unforgiving. The contractors, engineers and architects worked well together to resolve any details as and when they arose. Ongoing inspections of the steel work and a culture of collaboration and innovation led to the successful outcome of Club 2.

Cladding profile/ type used Klip-Tite
Cladding area/ coverage 3400m2
Cladding tonnage 18 Tons

Project Team

Project Team  Role             Company
Nominator Global Roofing
Client/ Developer Atterbury
Architect Hoffman Architects
Structural Engineer DG Consulting
Quantity Surveyor
GK Project and Cost Engineering
Main Contractor Wilson Bayly Holmes Construction
Steelwork Contractor LTS Steelwork
Steel Erector LTS Steelwork
Cladding Manufacturer Global Roofing Solutions
Cladding Supplier Global Roofing Solutions
Cladding Contractor Cladco

If you were a part of this project, and your company details are incorrect or missing – please notify the SAISC so that the error can be corrected.

Campus Square

Campus Square is a convenience centre situated on the corner of Kingsway and University Road, Melville. Anchor tenants include Pick ‘n Pay, Woolworths and a new Dischem, while the restaurant offering includes an upgraded Dros, RoccoMamas, enlarged Wimpy and a new Nandos. The Centre offers food, shopping, and convenience all under one roof and it is loyally frequented by students of the nearby University of Johannesburg.

The centre was recently extended and the brief to the architect was to create a very lightweight steel roof, with sidelights facing south to avoid heat gain.  A curved aspect was required on the sidelights to create a unique appearance. 

The extension of Campus Square was envisaged in steel from the start. Structural steel trusses (consisting of angles) at an average depth of 1m were used to span between 12 – 25m. I-beams were used where the roof span was less than 12m.

When tying into an existing building, there are usually unforeseen challenges that arise. With the extension of Campus Square, the existing building dimensions were not exact and the on-site dimensions weren’t measured prior to fabrication, which lead to the design team requiring additional brackets that had to be designed to enable the elements to span from column to column.

Another challenge that arose was that the designed steel members weren’t always available when they were needed, which delayed the construction process. To overcome this challenge and meet the deadline, a similar sized element was then identified and specified for the project.

A further challenge was dispensing of water off the existing roof which had a large number of steps and angles and new roof which was higher, a large concrete gutter had to be created between the two roofs, which in turn was used to support the steel structure.

The roof is undoubtedly an innovative aspect of the project. The roof was designed according to the minimum requirements as specified by the code, which resulted in a very light weight roof. Klip Lok 700 by Global Roofing Solutions was specified for the 8000m2 roof.

Fortnightly meetings were held where the professional team and contractor would discuss issues, progress and program to ensure the project runs smoothly. The end result is a successful extension of a widely popular convenience centre in Johannesburg.

Cladding profile/ type used KlipLok 700
Cladding area/ coverage 8000m2
Cladding tonnage 4,8 Tons

Project Team

Project Team Role Company
Nominator Global Roofing Solutions
Client/ Developer Key Stone properties
Architect Hammerhead Designs
Structural Engineer Axiom Engineers
Main Contractor Gothic Construction
Steelwork Contractor Nance Engineering
Steel Erector Nance Engineering
Cladding Manufacturer Global Roofing Solutions
Cladding Supplier Global Roofing Solutions
Cladding Contractor Chartwell Roofing (Pty) Ltd

If you were a part of this project, and your company details are incorrect or missing – please notify the SAISC so that the error can be corrected.

Bosch Warehouse

Bosch is a prominent supplier of home appliances in South Africa. The company required a new factory and warehouse facility and appointed Empowered Spaces to design a facility that would ‘wow’ their staff and guests. The brief to the architect for the new facility, which is located in Witfontein opposite the Serengeti Golf Estate, was to design a factory and warehouse that ties in with the company’s corporate standards.

The warehouse was envisaged as a steel structure clad in sheeting from the start as this is renowned as the most efficient and cost-effective way to construct a warehouse. The structural framing consists of grinder trusses and a steel column structure which is supported by precast concrete columns.

What makes the new Bosch warehouse and factory unique is the use of corrugated iron sheeting, as this isn’t often specified for large warehouse structures. 125 tons of cladding was supplied to cover the 20 574m2 of warehouse area. Global Roofing Solutions’ Klip-Tite was the chosen steel sheeting for the project.

To speed up the construction process on site, the project team was appointed far in advance. This enabled the design team to issue the contractor with appropriate information ahead of schedule, which led to quick and efficient construction on site. The result is world-class warehouse that fits with the Bosch’s corporate brand and profile.

Cladding profile/ type used Klip-Tite
Cladding area/ coverage 20574
Cladding tonnage 125 Tons

Project Team

Nominator Global Roofing Solutions
Client/ Developer Bosch
Architect Empowered Spaces
Structural Engineer Kantey & Templer Engineers
Quantity Surveyor IBP Construction
Main Contractor Bantly Construction
Steelwork Contractor Steel Band
Steel Erector Steel Band
Structural Steel Detailer KRU Detailing
Cladding Manufacturer Global Roofing Solutions
Cladding Supplier Global Roofing Solutions
Cladding Contractor Roofline

If you were a part of this project, and your company details are incorrect or missing – please notify the SAISC so that the error can be corrected.

                                                                                                                                                                                                                                                                                                                                                

33 Baker Street

What is the purpose of the structure/project?

 To upgrade a very old building, to accommodate multiple tenants of which the main tenant is Standard Bank.

What was the brief to the Architect? 

To convert the existing building into a contemporary design with a status commensurate with the expectations of Sasol Pension Fund and Standard Bank as a tenant.

Was the project envisaged in steel from the start? If not, why was it built in steel in the end?

The curtain wall application to an existing concrete structure demanded a steel frame to achieve a modulated façade.

Give a brief description of the structural framing. What type of sections were used (e.g. hollow, cellular, I beam etc) and why?

 Mostly I-Beams with angular trusses was used to hold the roof.

Give a brief description of the cladding process (complexity, difficulty, innovation etc).

In view of the fluctuating conditions inherent to the existing concrete structure, it was required that steel substructures be designed which would have sufficient adaptability to address the different conditions whilst being able to achieve a modulated curtain wall design.

Were there any challenges in the fabrication of the project from the Engineer’s design – If yes, please tell? Tell more about fabrication and erection process if it was complex, difficult, innovative etc.

Baker Street at its core was an upgrade of a current concrete building that was to be equipped with new structural steel to accommodate impressive looking glass and facades with paneling on the exterior. Essentially the overall appearance of the building was to be modified. The problem was getting accurate and existing concrete dimensions from site to work with the new Engineering/Architectural changes.

The Engineering drawings which was received had rugged ideas of what was required, in terms of the structural steel and, for a job like this, accurate measurements were of utmost importance.

In the end consultation and coordination between the Architects, Engineers, Glass-and Curved Façade team members, and Sheeting members had to work inwards from the outer most edges of the sheeting and glasswork.

However, the information provided by SVA, with regards to where everything had to be, completed, and getting the required support structures in design form, from the Engineers, allowed the Structural Steel Detailers to reconstruct what was needed from the ground up. The required structural steel did fit in, although tightly in places, but worked. Coordination on this level made everybody sure that everything would accurately fit in the end, especially using the exact three-dimensional (3D) Tekla models as well as proper DWG drawings, where everyone was able to double-check everything on their end. What followed from the new type of coordination with the Structural Steel Detailers leading the way was:  Problems being sorted out quickly in meetings, with nothing left unanswered where after it was checked and updated after meetings between all parties.

What is special/ unusual/ innovative/ aesthetic about the steelwork/cladding in this project?

The steel frame principle allowed sufficient flexibility to achieve a curtain wall cladding accentuated with aluminum solid elements as well as utilizing the steelwork at roof level to support a balcony structure. The essential idea was to achieve a simplicity of structures that could be erected within a limited time.

How did the project team work together (e.g. Contractor involved early, challenges/ease of communication etc.)?

The design demanded a meticulous coordination of the Engineer’ requirements, the curtain wall shop drawings and the detailing of the solid aluminum elements during the pre-contract documentation stage and on-site construction. The coordination of the various disciplines, as well as management of the process on-site, proved to be efficient.

Tons of structural steel used 210 Tons
Structural profiles used Hot Rolled I-sections, Angles & CFLC

Project Team

Project Team Role Company
Nominator KRU Detailing CC on behalf of Central Welding Works
Client/ Developer Redefine- Sasol Pension Fund
Architect SVA Architects
Structural Steel Detailer KRU Detailing CC
Engineer Sutherland
Quantity Surveyor Matla
Project Manager TPM project management
Main Contractor WBHO
Steelwork Contractor Central Welding Works
Steel Erector Central Welding Works
Cladding Manufacturer Hunter Douglas (Fancy Facades)
Cladding Supplier Hunter Douglas
Cladding Contractor Hunter Douglas
Glass Facades Diri Glass (Glass Facades)
Rigging/Cleaning Rails Gravity Access
Photographer, Other submitted images Central Welding Works

If you were a part of this project, and your company details are incorrect or missing – please notify the SAISC so that the error can be corrected.